Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites.

نویسندگان

  • Haiyun Liu
  • Dagang Liu
  • Fei Yao
  • Qinglin Wu
چکیده

Nano-sized cellulose crystals were fabricated from microcrystalline cellulose (MCC) using combined sulfuric acid hydrolysis and high-pressure homogenization techniques. The crystals were then utilized to prepare polymethylmethacrylate (PMMA) nanocomposites by the solution casting method. The cellulose nanocrystals had diameters from about 8 to 10nm and lengths in the range of 60-120 nm. Wide-angle X-ray diffraction (WXRD) results on the freeze-dried crystals revealed a slight increase in the degree of crystallinity after acid treatment. The composite sheets retained good transparency due to the size effect and dispersion of the cellulose nanocrystals. The thermogravimetric analysis indicated retained thermal stability of the composites. The storage modulus of the nanocomposite sheets from dynamic mechanical analysis showed significantly enhanced property in comparison with that of the pure PMMA sheets. The glass transition of the nanocomposites was shifted to lower temperatures with respect to the pure PMMA material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents.

Both cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) are nanoscale cellulose fibers that have shown reinforcing effects in polymer nanocomposites. CNCs and CNFs are different in shape, size and composition. This study systematically compared their morphologies, crystalline structure, dispersion properties in polyethylene oxide (PEO) matrix, interactions with matrix, and the resul...

متن کامل

Effect of Acid Hydrolysis Conditions on the Properties of Cellulose Nanoparticle-Reinforced Polymethylmethacrylate Composites

Cellulose nanoparticles (CNPs) were prepared from microcrystalline cellulose using two concentration levels of sulfuric acid (i.e., 48 wt% and 64 wt% with produced CNPs designated as CNPs-48 and CNPs-64, respectively) followed by high-pressure homogenization. CNP-reinforced polymethylmethacrylate (PMMA) composite films at various CNP loadings were made using solvent exchange and solution castin...

متن کامل

Crystallization Kinetics and Characterization of Nanostructure Mica Glass-Ceramics with Optical Transparency

Transparent glasses in a system of Li2O-MgO-SiO2-Al2O3-Fchemical constituents were prepared by melt quenching method. In the fabrication of nanocrystal glass-ceramics, controlled nucleation and subsequent crystal growth were necessary to avoid loss of transparency. It was therefore important to understand thermal properties and crystallization kinetic...

متن کامل

Cellulose Nanocrystal Inks for 3D Printing of Textured Cellular Architectures

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim wileyonlinelibrary.com (1 of 10) 1604619 exiting the nozzle, is challenging. A viscoelastic response with a finite yield stress is required for filament patterning.[3] The shear-induced alignment of anisotropic building blocks, including carbon fibers,[4,5] silicon carbide whiskers,[5] alumina platelets,[3] and nanofibrillated cellulose (NFC)[6]...

متن کامل

Polyaniline Modified Nanocellulose as Reinforcement of a Shape Memory Polyurethane

In this work, electrically conductive cellulose nanocrystals were used to reinforce shape memory polyurethanes, adding an extra variable to tune up the properties of these nanocomposites. The modified nanocrystals were prepared by an in situ polymerization method, growing polyaniline (PANI) on the surface of the cellulose nanofibrils [3]. These crystals combine the good mechanical properties of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 101 14  شماره 

صفحات  -

تاریخ انتشار 2010